

PeleAnalysis documentation

Contents:

	Data Structures
	Plotfiles

	FArrayBox and MultiFab

	MEF - Marc’s Element Format

	StreamData

	N-dimensional bins

	buildPMF - Create Fortran 1D interpolator

	conditionalMean - Create data for conditional mean plots

	averagePlotfile - Create a pltfile by averaging existing pltfiles

	combinePlts - Combine plotfiles

	curvature - Curvature of plotfile scalar

	grad - Gradient of plotfile scalar

	isosurface - Isosurface of plotfile scalar
	Details

	Signed distance function

	jpdf - Create data for joint PDF files

	stream - Streamlines of plotfile vector
	Options

	sampleStreamlines - Sample a plotfile to streamlines

	streamSub - Subset streamlines

	streamTubeStats - Stream tube statistics

	subPlt - Subset plotfile

	surfMEF Tools - Manipulate MEF files

README.rst:

PeleAnalysis

This repository contains a collection of standalone routines for processing plotfiles created with the AMReX software framework for block-structured adaptive mesh refinement simulations. Documentation is under development, but is
available at

https://peleanalysis.readthedocs.io/en/latest/

AMReX is required for these tools, and is available https://github.com/AMReX-Codes/amrex

In order to build these processing tools, you should clone or fork the amrex repository, and set the environment variable AMREX_HOME to point to the local folder where that is placed. Then clone this repository, cd Src and edit the GNUmakefile to select which tool to build. If AMReX is configured properly, a stand-alone executable will be built locally, based on the selected options, including spatial dimension (2 or 3), compiler choices, whether to build with MPI and/or OpenMP enabled, and whether to build a debugging or optimized version. Note that some of the tools require building a companion f90 source file - you must manually set the flag in the GNUmakefile accordingly. More extensive documentation is available (see building instructions below).

To add a new feature to PeleAnalysis, the procedure is:

	Create a branch for the new feature (locally)

git checkout -b AmazingNewFeature

	Develop the feature, merging changes often from the master branch into your AmazingNewFeature branch

git commit -m "Developed AmazingNewFeature"
git checkout master
git pull [fix any identified conflicts between local and remote branches of "master"]
git checkout AmazingNewFeature
git merge master [fix any identified conflicts between "master" and "AmazingNewFeature"]

3. Push feature branch to PeleAnalysis repository (if you have write access, otherwise fork the repo and
push the new branch to your fork):

git push -u origin AmazingNewFeature [Note: -u option required only for the first push of new branch]

	Submit a merge request through the github project page - be sure you are requesting to merge your branch to the master branch.

Documentation for the analysis routines exists in the Docs directory. To build the documentation:

cd Docs
make html

This research was supported by the Exascale Computing Project (ECP), Project
Number: 17-SC-20-SC, a collaborative effort of two DOE organizations – the
Office of Science and the National Nuclear Security Administration –
responsible for the planning and preparation of a capable exascale ecosystem –
including software, applications, hardware, advanced system engineering, and
early testbed platforms – to support the nation’s exascale computing
imperative.

Indices and tables

	Index

	Search Page

Data Structures

There are a number of data structure formats used within the
PeleAnalysis suite of codes. Some are basic AMReX types, such as
MultiFab or plotfiles, while others are specific to the
diagnostics and cannot be represented naturally in AMReX’s containers
that were generally created for block-structured data. Here, we
provide an overview of the data structures used by the various tools,
both how they are (currently) written to disk and how they are used in
the analysis tools.

Plotfiles

Plotfiles are the standard format for reading data from a Pele
simulation. Their format is discussed in the AMReX documentation [https://amrex-codes.github.io/amrex/docs_html/IO.html]. For a
multi-level AMR calculation, a plotfile contains an ASCII Header
file and one subfolder for each refinement level. There may also be a
folder containing multilevel particle data, and other
application-specific files (build information, typical state values,
run input parameters, etc). Each refinement level contains one or more
MultiFab file sets (including an ASCII header file and a number of
data files, numbered sequentially). The main Header file includes
a list of variable names written to the structure, some details about
the domain and refinement data and specific run status, and a mapping
for which Multifab files in the level subfolders contain each of the
plotfile variables.

The analysis codes read plotfiles from disk into memory using one of
two AMReX-provided C++ classes: PlotFileData or AmrData. The
former is the more recently developed of the two, and has a simple
interface for reading and interpolating data from the plotfiles into
local temporaries used to build diagnostics. The AmrData object
is somewhat more limited in terms of interface to interpolations, etc,
but has the significant advantage of allowing for demand-driven data
reads - that is, only the plotfile metadata is read from disk when the
AmrData object is instantiated; the data is read only as needed to
satisfy a FillVar request - and then it is read at the granularity
of component and box. A FlushGrids operation is available to
dynamically manage memory used by the AmrData object. This
functionality can be critical when processing extremely large datasets
on massively parallel machines. In the set of analysis codes in this
repository, either may be used depending on the application for which
the tool was developed. They can also be rather trivially converted,
as needed.

Note that many of the processing tools read plotfiles as input,
derive fields that live on the grid structure of the plotfile, and
write results out as new plotfiles. There are a number of tools one
can use to subset plotfiles in space and component indices and to
join together multiple plotfiles (with some limitations on the compatibility
of the level and grid structures).

FArrayBox and MultiFab

All of the usual AMReX data structures are, of course, available in
the analysis tools, and are used extensively. These structures are
documented in the AMReX documentation [https://amrex-codes.github.io/amrex/docs_html/Basics_Chapter.html].
Normally, these structures are used as recommended in the AMReX
documentation and application codes. However, as discussed below,
there are operations that these structures support which we have
“hijacked” for our own purposes. In particular, FArrayBox and
MultiFab can be read and written to disk in a format that is
somewhat “self-describing”. Floating point data is managed in a
portable way and the commands to interact with the IO are particularly
convenient/simple. Thus, when we need to read or write data, and it
happens to be structured in a way that makes use of these containers,
we use them…even if we have to “cheat” to do it!

MEF - Marc’s Element Format

An MEF file is an example of (ab)using the AMReX IO functions for
the FArrayBox. An MEF file is the on-disk representation of
an unstructured data set, which is inherently not supported in the
native AMReX data structures. An unstructured dataset contains a
number of named components at a set of implicitly numbered “nodes”,
and then a set of integer sets that identify an oriented list of nodes
to connect for each “element”. An MEF file makes use of the IO
operations of FArrayBox in order to collect together into a single
file all the data associated with the unstructured data. Examples
where an MEF structure is used include triangulated surfaces (such
as those that result from the isovalue contouring operations in 3D)
and polylines (or segment sets that represent contours of 2D data). A
limitation of the MEF format is that all elements must have the
same number of nodes, and all nodes must have the same number of
components (in the same ordering). Also, we typically assume the
first AMREX_SPACEDIM components contain the spatial coordinates.
On disk, the MEF file is a concatenated set of information containing:
a label, the variable names, the number of nodes per element, the
number of elements, followed by a dump of the FArrayBox used to
store the nodes, followed by an ASCII write of the elements. At the
moment, the IO of the unstructured datasets is done explicitly by each
tool that needs them (we should probably encapsulate this into a class
that manages this part…TODO). Two other notes are that the node
numbering in an MEF file starts at 1 (rather than 0) by convention,
and the FArrayBox used to manage the nodes is built on an AMReX
Box object that has its first component running from 0 to
Nnodes-1, and its 1:AMREX_SPACEIM-1 extents running from 0 to
0. Thus, one does not want to treat this special Box or
FArrayBox in the normal AMReX way (intersections in index space
will NOT give the user what is expected!). Visualization of these data
structures using standard AMReX tools will also give perhaps
unexpected results (there are conversion tools to generate VTK VTP-format
files from MEF files for reading into Paraview, e.g. See the
figure below). The special Box and FArrayBox objects
used with MEF files are typically created on-the-fly for the sole purpsoe of IO
operations. Outside of IO, the data is typically moved into structures
that more clearly indicate usage.

[image: _images/surf.png]

1 : An isotherm of a flame-in-a-box case, where the surface is
colored by the concentration of a flame intermediate species.
This was created as an MEF file from the isosurface.cpp
tool, then converted from MEF to DAT (Tecplot ASCII
data), then from DAT to VTP using the included
python script, datToVTP.py, and imported into Paraview).

Many of the analysis routines that interact with the unstructured
datasets need to work in parallel (with MPI). Typically, when that
is done, each rank has a local node numbering. However, the MEF
format does not have a parallel counterpart, so all IO is typically
done via the IO rank, and thus requires an explicit aggregation and
node number rationalization step (which, again, is done explicitly
in the codes, and probably ought to be encapsulated into a class
or something to ease use - TODO).

Several of the diagnostic tools interact with MEF structures. They
are used to represent isosurfaces of 3D data, polylines that are
isolines of 2D plotfile data, and isolines of 3D surface data. Although
they are generally used for node-centered data, the structures can
be (ab)used to represent data that is element-centered. This is
done by duplicating the data at the nodes of each triangle, including
its position, but setting the values of the other components for all
nodes in the element to the elemental value. This is the strategy
used, for example, to represent an element-averaged value of a quantity
(or even values of integrated quantities over stream tubes - discussed
below). The (brute force) writing of an MEF to a std::ofstream os
looks like this:

os << label << std::endl;
os << vars << std::endl;
os << nElts << " " << nodesPerElt << std::endl;
nodefab.writeOn(*os);
os.write((char*)eltVec.dataPtr(),sizeof(int)*eltVec.size());

StreamData

StreamData is a class whose design sorta follows the MEF
ideas. The format was generated to represent “streamline data” in 2-
and 3-space, and is fundamentally unstructured in nature. Imagine you
have a cloud of point locations that you would like to use to seed the
generation of integral paths along a vector field. For example,
imagine the points are the nodes of an isotherm that defines a “flame”,
and that from each node we construct a path along the
integral curves of the temperature gradient, into both the hot and
cold sides of the surface. The connectivity of the triangles on the
seed surface can be used to define a connectivity of prism-shaped
elements that tile a subregion of the domain between the hot and cold
ends of the integral curves.

[image: _images/hairySurf.png]

2 : An isotherm from a flame calculation, where the triangles defining the surface
are visible. The black paths follow integral paths from the surface nodes. Note
that the integral curves do not cross. As they are constructed from the 3D plotfile,
any quantity defined in the plotfile can be interpolated to these paths. Also,
a number of operations can be defined on the curved elements defined by extension of
the surface triangles along these paths - e.g., these can define local “flamelets”.

The representation of this data in memory is quite complex. Each
streamline consists of a set of points, and each point has a location
and any number of quantities that have been interpolated from the
source plotfile data. Additionally, we want to preserve the
connectivity of the surface that implies the connectivity of the
curved prism-shaped elements that tile the volume of space surrounding
the seed surface.

Because stream data can be quite large, the structures are inherently
parallel, and make extensive use the MultiFab and its parallel IO
capabilies. Each line contains the original seed point, which falls
into the valid ragion of a box from the finest level of the plotfile
that contains that point. The Box associated with this region of
space and refinement level is deemed the “owner” of the stream
line. The data associated with the stream is stored in an
FArrayBox associated with the MultiFab at the level of the
owning Box. The special Box of the owning FArrayBox is
created over the bounds (0:Nlocal,-Npts:Npts,0), where Nlocal
is the number of seed points owned by this box, and Npts is the
number of points on the stream line towards each direction from the
surface (j=0 is on the seed surface). The FArrayBox created
on this Box object has Ncomp components, including position
coordinates and any number of fields interpolated from the source
plotfile. The data is distributed with the same distribution map used
to distribute the field data when the plotfile is read (determined by
the analysis code, NOT the original simulation). Any Box in the
BoxArray at each level in the stream data that do not contain
stream lines are set to a default (invalid) size, marking to the
analysis code that there are no stream lines there to process.
Much like the temporaries used in IO of MEF data, the MultiFab
structures associated with stream data should not be treated like normal
AMReX data structures - visualization and manipulation of the data
requires detailed knowledge of their layout.

On disk, the StreamData object looks much like a plotfile. There
is an ASCII Header file, and subfolders for each AMR level.
Within the subfolders, there are MultiFab files associated with
the stream line data, possibly written in parallel across multiple
data files, etc. Additionally, there is a text file that specifies
the connectivity of the elements. Presently, these structures are
written, brute force, by the analysis codes (see the function
write_ml_streamline_data in stream.cpp, for example). The
functionality has been lifted in to a StreamData class, but the
analysis tools haven’t yet been ported to use these class - TODO.

N-dimensional bins

Many of the analysis tools generate bins of data. These bins
typically are used to create joint probability density functions
(jPDFs) in 1, 2 or higher dimensions. They are also used to condition
statistics as an intermediate step to generating jPDFs. 2D jPDFs are
somewhat special in that we typically assume constant bin widths in
each coordinate so that an FArrayBox is a natural container to use
to hold the result. Also because of the IO capabilities of this
class, it is a natural candidate for a format on disk. However,
an FArrayBox is a simple container, and has no notion of axes
labels, variable names, bin sizes, etc. Thus, whenever we are
generating this type of data, there is an inherent complexity in how
to represent the final output data to enable plotting and
interpretation of the results. Note that the analysis tools here DO
NOT include plotting routines, so there has to be an understanding
about how to communicate all these details to the end user (such as
xmgrace or matlab, etc). To date, we have not come up with a
sufficiently flexible, self-describing way to convey all this
information, so the tools typically dump everything one needs and the
person orchestrating the plots must manually assemble the necessary
information.

A particularly noteworthy case is the binMEF tool, which bins the
data in an arbitrary number of coordinates. For each coordinate, the
user determines the min, max and number of bins, and the input data
MEF file that represents a surface to be chopped up. The code
proceeds through each coordinate, and each bit of area landing in a
particular bin for coordinate n, is then chopped up into bins of
coordinate n+1. This can be used to generate an area-weighted
jPDF in multiple coordinates, but can also be used as a conditioning
tool to exclude parts of the surface satisfying certain criteria
(falling outside the bins defined for that coordinate). Given the
array of bins, the result can be represented as a floating point
number (the area) and an array of integers, one for each of the
binning coordinates. Just like the simpler 2D jPDF example above, the
end user plotting or analyzing the results of this tool must assemble
all the bin info in their plotting package of choice. For the
N-dimensional case however, it is rarely useful to store the data as a
dense N-space container. The results are written to the screen in
their naturally sparse format. We haven’t yet developed a
standardized way to communicate all these details, so the process can
be tedious, but it is unavoidable.

buildPMF - Create Fortran 1D interpolator

Given a text file consisting of an array of states over a 1D set of points, create a fortran function that interpolates the states by computing the average of each state between two locations. Typically, this is used to create a function for interpolating a 1D premixed flame solution from PREMIX or Cantera that can be linked with another code in 1-3 spatial dimensions for initializing data.

`
Usage:
`

Example:

conditionalMean - Create data for conditional mean plots

Given a plotfile, a conditioning variable, and a list of variables, create data files, each containing
conditional means and standard deviations in each of a set of bins of the conditioning variable.
Use plotJpdf.m from the Scripts folder to plot the resulting data in matlab/octave, using a line for the
mean, and a gray shaded region for the values within a standard-deviation of the mean.

`
Usage:
`

Example:

averagePlotfile - Create a pltfile by averaging existing pltfiles

Two tools exist for the purpose of averaging plotfiles. averagePlotfile
assumes all plotfiles to be averaged have the same underlying BoxArrays, or
the output is only given at the base level. averagePlotfileFlexible relaxes
this assumption: the output file will be refined anywhere any of the input
files are refined (coarse data is interpolated to the finer levels in each file
as needed before averaging to obtain this result). Both tools require that all
files have the same domain and base grid, and by default the same variables.
averagePlotfileFlexible adds the capability to optionally select a specifc
list of variables, in which case that list must be present in all input files
but otherwise the input files may contain different sets of variables.

```
Usage:


./avgPlotfilesFlexible2d.gnu.MPI.ex infiles=$(ls -d plt*) [options]




```

Example:

combinePlts - Combine plotfiles

Create a new plotfile that is composed of a set of components taken from each of
two existing plotfiles. The input plotfiles must have the same AMR hierarchy,
up to the finest level requested for the output.

`
Usage:
`

Example:

curvature - Curvature of plotfile scalar

Given a plotfile that contains a scalar quantity, compute the local value of the mean and Gaussian
curvature of isopleths of that scalar at all cells in the solution. Either create a new plotfile
containing only these computed quantities, or append the fields to the existing plotfile.

`
Usage:
`

Example:

grad - Gradient of plotfile scalar

Given a plotfile that contains a scalar quantity, compute the components of the gradient, and its
magnitude, of that scalar at all cells in the solution. Either create a new plotfile
containing only these computed quantities, or append the fields to the existing plotfile.

`
Usage:
`

Example:

isosurface - Isosurface of plotfile scalar

Create isosurfaces (contours) from a component in a plotfile, given
the name of the variable and a value. The result is written as an MEF
(Marc’s element file). In 2D, the contour segments are connected up
into a minimal set of polylines before writing. Optionally, map other
variables to surface, and optionally compute signed distance from this
surface onto the cell-centered mesh of the plotfile.

Usage:
 ./isosurface2d.gnu.MPI.ex inputs infile=<s> isoCompName=<s> isoVal=<v> [options]
 Options:
 infile=<s> where <s> is a pltfile
 isoCompName=<s> where <s> is the quantity being contoured
 isoVal=<v> where <v> is an isopleth value
 Choosing quantities to interp to surface:
 comps=int comp list [overrides sComp/nComp]
 sComp=start comp[DEF->0]
 nComp=number of comps[DEF->all]
 finestLevel=<n> finest level to use in pltfile[DEF->all]
 writeSurf=<1,0> output surface in binary MEF format [DEF->1]
 outfile=<s> name of tecplot output file [DEF->gen'd]
 build_distance_function=<t,f> create cc signed distance function [DEF->f]
 rm_external_elements=<t,f> remove elts beyond what is needed for watertight surface [DEF->t]

Details

Computing the isosurface requires building a “flattened” representation of the AMR data structure that ignores
covered data, and properly connects cells across coarse-fine interfaces. Once we have a watertight representation of the surface, we make use of the marching squares (in 2D) or marching cubes (3D) strategy to build a watertight contour based on intersections of the surface with the dual grid (see Figure 3).

[image: _images/dualGrid.png]

3 In 2D, the isocontour (in black) is computed from the dual grid
created by connecting cell centers. Even with multiple AMR levels the
dual grid is composed on quads (hexes in 3D), but at the coarse-fine
interfaces, some of the nodes are degenerate. Intersections between
the isocontour and the quad element boundaries are computed by linear
interpolation between the scalar values of the nodes at either end of
the segment. The contour segments (or triangles) are obtained by
connecting these intersections across the elements.

The isosurface code contains the following steps:

	Use AMReX-provided class PlotFileData to load isoCompName field data, and FillPatchTwoLevels to fill grow cells, including those across periodic boundaries.

	The location of each valid cell center is computed using \(\Delta x\) at that level. The grow cells are set to have all their locations at the center of the coarse cell outside, and the grow data is filled with piecewise constant interpolation. The effect is that the coarse and fine levels are joined in a water-tight way using degenerate quads/hexes, that actually look in 2D either like a triangle (a degenerate quad) or a trapezoid (depending on whether the two grow cells are in the same coarse cell or adjacent ones (see Figure 3).

	Intersections of the isosurface with these element constructs is computed by searching each pair of adjacent nodes around the outside of the polygon for a sign change of (value - isoVal). When such a condition is found, the location of the intersection is computed by linear interpolation, and the desired additional variables are mapped to the same point. The result is stored as a pair<Edge,Point>, where Edge is a pair of IntVects defining the endpoints of the segement that is intersected and their associated Amr level ID, and the Point contains the coordinates first, then any other mapped/interpolated variables at that node. The intersection structs are stored in a map of these pairs, allowing exact comparisons for unique nodes with no floating point comparison issues.

	Elements on the surface are described as an ordered vector of these iterators into a master map for this rank.

	Portions of the surface intersecting each valid grid are computed in parallel, and collated onto a single MPI rank. Multiply defined nodes (those with the same pair of IntVect/AmrID) are eliminated and a global numbering of the unique set is created; the element list is merged and the numbering is reconciled.

	The map representation of the surface is converted to a simple surface representation and written to disk by a single processor.

Signed distance function

Optionally, the code can also return a field containing the signed distance to the isosurface from each valid point in the plotfile structure. The shape of this data will correspond to that of the original plotfile. The signed distance is computed, up to a maximum, on all points in the domain.

jpdf - Create data for joint PDF files

Given a plotfile and a subset of the variable names that it contains, bin data for every unique pair of variables,
making n*(n-1)/2 sets. The results are written to separate files inside the plotfile folder and can be written as
tecplot, matlab, gnuplot, fab, or plotfiles.

`
Usage:
`

Example:

stream - Streamlines of plotfile vector

Given a plotfile containing a vector field and an MEF file containing
a collection of “seed” points, create “streamlines” eminating from the
seed points that are locally parallel to the vector field. The
resulting streamlines will be of a fixed length going both directions
along the vector field from the seed point. Results will be written in a
custom plotfile-like data folder, which is discussed in the data section.
These files cannot be directly visualized with standard plotfile tools.

Usage:
 ./stream2d.gnu.MPI.ex plotfile=<string> [options]
 Options:
 isoFile=<string> OR seedLoc=<real real [real]
 streamFile=<string> OR outFile=<string>
 is_per=<int int int> (DEF=1 1 1)
 finestLevel=<int> (DEF=finest level in plotfile)
 progressName=<string> (DEF=temp)
 traceAlongV=<bool> (DEF=0)
 buildAltSurf=<bool> (DEF=0)
 (if true, requires altVal=<real>, also takes dt=<real> (DEF=0) and altIsoFile=<string>)
 nRKsteps=<int> (DEF=51)
 hRK=<real> (DEF=.1 (*dx_finest in plotfile)
 nGrow=<int> (DEF=4)
 bounds=<float * 4> (DEF=NULL)

Options

Seed points

Streamlines are computed to emanate from seed points specified by the
user. The seed points can be defined as the nodes of a triangulated
surface (in 3D) or a “polyline” (2D), or can be specified directly in
the ParmParsed input.

If a triangulated surface or polyline is used (by passing the name of
the MEF file via the isoFile keyword), the resulting streamlines
retain the connectivity inferred by the input structure. And since
the steamlines will not, in general, cross they will bound a triangular-prism
shaped volume extending a distance from the surface on either side. The union of these
volumes tile a layer around the original triagulated surface. In 2D, the
streamlines will bound a polygonal structure that similarly tiles the
region around the original polyline.

If the seed points are specified directly in the input, no connectivity
information is inferred. Currently, the only option for this mode is
accessible via the seedLoc keyword, which specifies the coordinates
of a single seed point.

Integration options

Figure 4 illustrates a streamline (in black)
that is computed from a vector field, whose components are specified
on cell centers. The paths are integrated in both directions from the
seed point, as depicted in 4. The user
specifies the interval, \(h\), as a fraction, hRK, of the grid
spacing at the finest level of vector field used, as well as the total
number of such intervals, nRK.

[image: _images/RK4.png]

4 Streamlines (in black) are computed by integrating the vector field
from a seed point in intervals of \(h\), e.g., from point A to
B, using the RK4 scheme. The vector field components are defined at
the nodes of the dual grid connecting the cell centers and are
linearly interpolated.

Vector field

Currently, the vector field can be constructed to align with the gradient of a scalar
field, or with the flow velocity (if the option traceAlongV = t). If the the velocity
field is not used, the required components of the gradient vector field (identified
via the keyword, progressName) are computed on the fly with second-order centered
differences.

Alt surface

If the keyword buildAltSurf = t, a new triangulated surface is constructed after the
streamlines are generated. This surface will be created where the scalar identified as
progressName takes the value specified by the keyword, altVal along the streamlines.
The connectivity of this surface will be identical to the connectivity of the original
surface (specified with the keyword, isoFile). The new surface is written to the
file indicated by the keyword, altIsoFile.

Algorithm details

The algorithm starts by determining the finest AMR level box in the
plotfile (indicated by the keyword, plotfile) that contains the
physical location of each seed point (up to and including the level
indicated by the keyword, finestLevel). Then, as the required
plotfile data is read (in parallel), a distribution map will be
created for each level, and we use this to assign the processor that
will be responsible for computing the streamline associated with that
point.

The RK4 scheme is used to integrate the vector field, \(u\), along streamline
for a distance \(h\) from A to B (see Figure 4):

\[\begin{split}x_{B} =& \;x_{n} + \frac{1}{6} \big(k_1 + 2 k_2 + 2 k_3 + k_4\big)\\
&k_1 = h \, u(x_{A}), \;\; x_{1} = x_{A} + 0.5 k_{1}\\
&k_2 = h \,u(x_{1}), \;\; x_{2} = x_{A} + 0.5 k_{2}\\
&k_3 = h \,u(x_{2}), \;\; x_{3} = x_{A} + k_{3}\\
&k_4 = h \,u(x_{3})\end{split}\]

The vector field \(u\) is defined at cell-centers and we need to
construct a function that, given the vector field data at nodes, is
able to linearly interpolate these components as needed to evaluate
the above expressions. A simple way to orchestrate this interpolater is
to base it on source data that lives on a logically rectangular,
uniformly space grid, as this allows simple/fast “mod” operations to
locate the specific source data indices for the interpolation.

However, if the seed point starts off, for example, near the boundary
of the owning box, it is possible that the integration will eventually
step off the grid, and possibly across AMR levels, before reaching the
required path length, and thus attempt to access data that is
unavailable to this processor. A simple solution follows the usual
AMReX approach in these situations - grow cells. Given the hRK and
nRK parameters, we can compute the size of a grow region buffer that
is guaranteed to fully contain the path - even if it is rather large -
see Figure 5. And given the standard AMReX
fill-patching infrastructure, we can fill the required data locally
from the plotfile classes, being careful to account for periodic and
physical domain boundaries.

[image: _images/StreamInterpGrowBox.png]

5 A streamline (red) is generated from the seed point (blue), which
is owned by Box 1 in the finest level here, Level 1. The
streamline goes beyond the valid region of Box 1. Data to fill the
grown box is copied from neighboring grids at the same refinement
level, and interpolated from coarse levels where needed.

Note that because the size of the grow region needed depends on the
maximum length of the streamlines, these patches can be quite large,
particularly in 3D. However, this approach is far simpler than any
method that might move between levels and/or processors whenever
boundaries are crossed. In order to manage very large datasets, this
tool has been written to run in parallel with MPI. For maximum
flexibility, there is also a separate tool that can read the
streamline generated with the above strategy, and interpolate a set of
fields onto the streamlines.

sampleStreamlines - Sample a plotfile to streamlines

Given a set of streamlines, and a plotfile, sample the specified field
quantities to the streamlines, and write out the new lines with all
quantities. This routine is specifically set up to work with limited
memory. For example, the list of components to be interpolated can be
broken into groups to minimize the memory required.

`
Usage:
`

Example:

streamSub - Subset streamlines

Extract a subset of streamlines from a streamline file, based on one
of a set of user-selectable criteria (random sampling, physical
location of the streamline seed point, etc). This process will discard
the connectivity info of the streamlines. Typically, this tool is used
to extract a manageable number of lines for quick plotting in order to
get a feel, or gather statistics, for the data contained in the full
set.

`
Usage:
`

Example:

streamTubeStats - Stream tube statistics

Given a set of streamlines that represents the bounds of triangular-wedge shaped volumes, gather statistics
of the volumes. Output the results as a triangulated surface MEF file, where for each triangle, the values at all three
nodes are equal and represent the quanity computed for the entire wedge volume. Thus, the MEF format is overloaded
here so that each node is multiply-defined, based on the number of triangles is it part of. The resulting MEF
file will also contain the area of the triangle from the original tesselation that created the seed points
for the streamline, with the intention that the results here can be used to construct statistics weighted by
this area. Typically, this processing is used to gather statistics associated with a isosurface (such as one that
represents a flame).

`
Usage:
`

Example:

subPlt - Subset plotfile

Create a new plotfile from an original one by subsetting in space and/or component. The spatial subsetting is
specified by giving a bounding box in integer coordinates at the coarsest AMR level in the file (the default is
the entire domain). The component subset is specifeid as an integer list of components (the default is all
components).

`
Usage:
`

Example:

surfMEF Tools - Manipulate MEF files

The MEF (Marc’s element format) file format is hacked up data structure-on-disk, primarily intended to store
a triangulated surface. The data at the nodes (including the position, but also potentially other field
quantities) is written using AMReX’s FabIO functions so that the floating point data is portable. The
triangles are specified as a set of integer triples, where each integer is the (zero-based) id of the
node. The first four lines in an MEF file are ASCII, adn include a label, the list of variables,
the integer number of elements, and then the FAB header info. The binary FAB info is then concatenated, and
is then followed by the element triples, one element per one, written in ASCII.

The surfMEF conversion tools are used to transform to and from the MEF format, and to do simple arithmetic
operations on the data.

	combineMEF: Combine the components of two MEF files, assuming they have the same node positions and connectivity

	mergeMEF: Merge the triangles of two different MEF files

	multMEF: Multiply specific components of MEF files together

	scaleMEF: Scale specific components of the MEF by constants

	sliceMEF: Compute a contour on an MEF surface

	smoothMEF: Smooth an MEF surface

	surfDATtoMEF: Convert a Tecplot-formatted ASCII triangulated surface file into an MEF file

	surfMEFtoDAT: Convert an MEF-file into a Tecplot-formatted ASCII triangulated surface file

	trimMEFgen: Do an area-weighted binning of an MEF surface file, by assuming linear variatoin of the field on each triagle and slicing the triangles into bits at the bin boundaries

`
Usage:
`

Example:

Index

 _static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_images/RK4.png

_images/StreamInterpGrowBox.png
Grown Box

i

Box 1

N

‘ Box 2 \

Level 0

_images/dualGrid.png

_images/hairySurf.png

nav.xhtml

 Table of Contents

 		
 PeleAnalysis documentation

 		
 Data Structures

 		
 Plotfiles

 		
 FArrayBox and MultiFab

 		
 MEF - Marc’s Element Format

 		
 StreamData

 		
 N-dimensional bins

 		
 buildPMF - Create Fortran 1D interpolator

 		
 conditionalMean - Create data for conditional mean plots

 		
 averagePlotfile - Create a pltfile by averaging existing pltfiles

 		
 combinePlts - Combine plotfiles

 		
 curvature - Curvature of plotfile scalar

 		
 grad - Gradient of plotfile scalar

 		
 isosurface - Isosurface of plotfile scalar

 		
 Details

 		
 Signed distance function

 		
 jpdf - Create data for joint PDF files

 		
 stream - Streamlines of plotfile vector

 		
 Options

 		
 Seed points

 		
 Integration options

 		
 Vector field

 		
 Alt surface

 		
 Algorithm details

 		
 sampleStreamlines - Sample a plotfile to streamlines

 		
 streamSub - Subset streamlines

 		
 streamTubeStats - Stream tube statistics

 		
 subPlt - Subset plotfile

 		
 surfMEF Tools - Manipulate MEF files

_static/comment-bright.png

_images/surf.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

